
"Rotation Tracks" – A spatial history of circulation intensity and location

Travis M. Smith

NSSL / U. of Oklahoma
(CIMMS)

Travis.Smith@noaa.gov

A new paradigm of circulation history

- A complimentary product to the MDA and TDA algorithms, not a replacement
- Circulation *location*, *intensity*, and *history* are shown in *one simple image*
 - Where were (are) the strongest storms, and how strong were (are) they?
- Does not suffer the limitations of the heuristic algorithms (TDA and MDA)

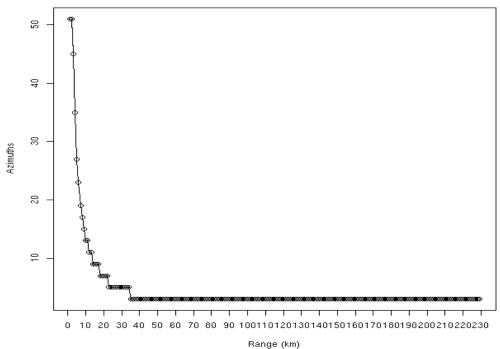
Linear Least Squares Derivatives (LLSD) of radial velocity data

- A filter for radial velocity data
- Typical kernel size of 2500m wide (crossazimuth) by 750m deep (along-azimuth) highlights areas of mesocyclone-scale circulation – all points in the kernel are used, rather than just a "peak-to-peak" calculation
- Not a discriminator of tornadic versus nontornadic circulations on its own.

Linear Least Squares Derivatives (LLSD) of radial velocity data

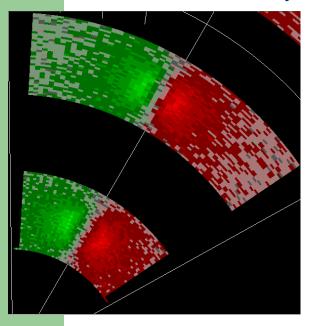
Azimuthal (rotational) shear

Divergent (alongazimuth) shear

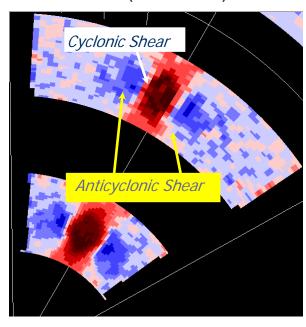

$$u_{s} = \frac{\sum s_{ij} u_{ij} w_{ij}}{\sum (\Delta s_{ij})^{2} w_{ij}} \qquad u_{r} = \frac{\sum i u_{ij} w_{ij}}{\Delta r \sum i^{2} w_{ij}}$$

$$u_r = \frac{\sum i u_{ij} w_{ij}}{\Delta r \sum i^2 w_{ij}}$$

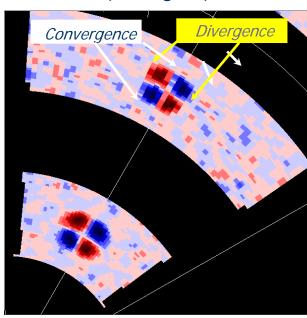
- u_{ij} is the radial velocity at point (i,j) in the kernel
 w_{ij} is a weighting function (uniform or Cressman)
- $\Delta \dot{s}$ and Δr are the pulse volume width (degrees) and depth (m)
- s_{ii} is the azimuthal distance from the center of the kernel to the point (i,j)


Linear Least Squares Derivatives (LLSD) of radial velocity data

 Number of azimuths required for kernel varies with range (3 minimum)

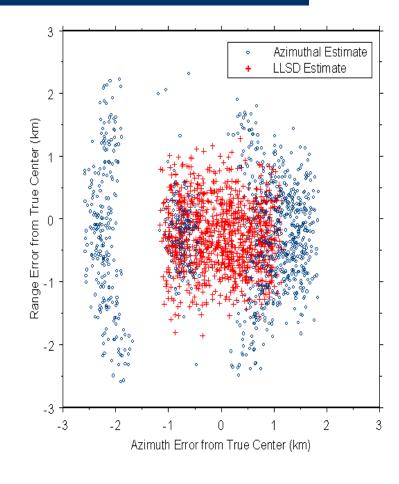


Linear Least Squares Derivatives (LLSD) of radial velocity data

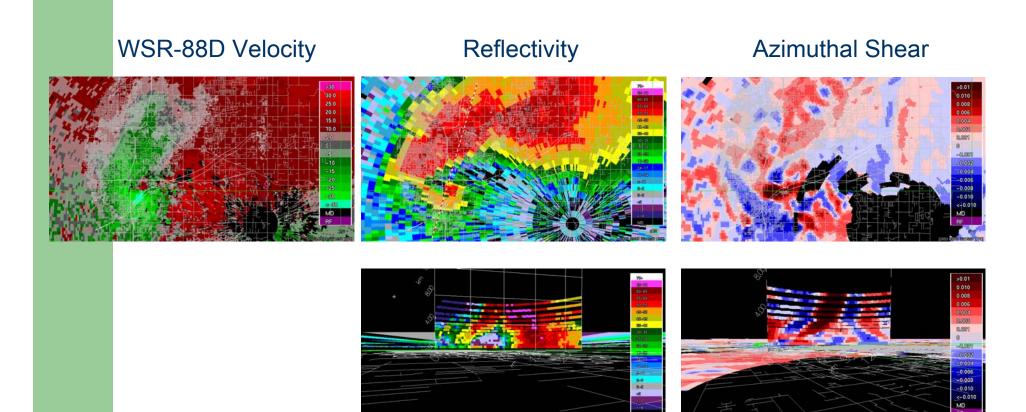

Simulated WSR-88D Velocity

Azimuthal (rotational) Shear

Radial (Divergent) Shear



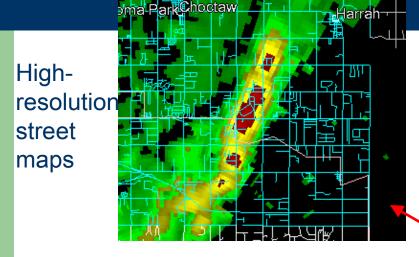
Rotational LLSD versus "Peak-to-Peak" azimuthal shear



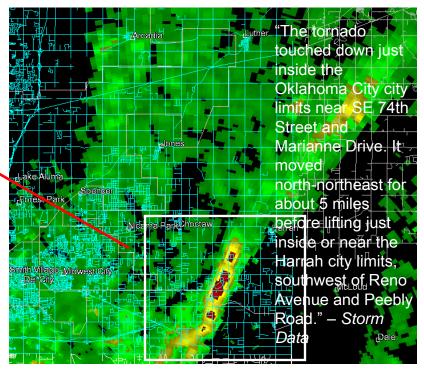
Rotational LLSD versus "Peak-to-Peak" azimuthal shear

- Location errors for determining the center of circulation is minimized by the LLSD method
 - Example: at 120 km range
 - LLSD versus a MDAlike calculation

LLSD Azimuthal Shear in 3D


From LLSD to "Rotation Tracks"

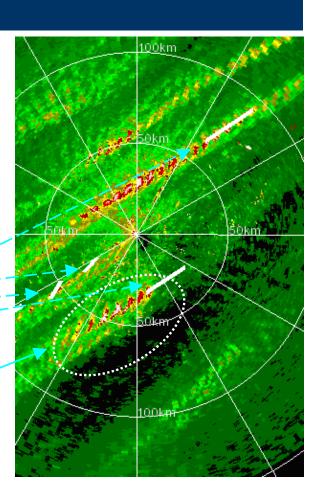
- 1. Median filter the velocity data
 - Removes data holes and noise, but
 - Also removes velocity peaks
- 2. Compute rotational LLSD ("half vorticity")
- 3. Remove errors caused by velocity dealiasing failures
- 4. Remove data in low-reflectivity (non-precipitation) areas


From LLSD to "Rotation Tracks"

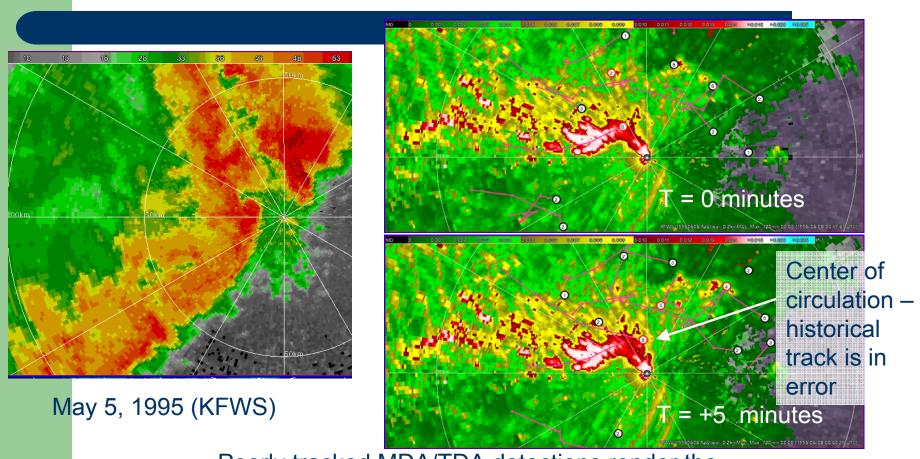
- 5. Calculate the max rotational shear in a layer (e.g. 0-3 km MSL; can use any user-specified levels OR environmental-based levels such as LCL)
- 6. Take the maximum value of rotational shear for each layer for specified time intervals (e.g. 2 hrs or 6 hrs)

Rotation Tracks: Benefits

- Post-event verification: maps are printed out and given to storm damage assessment teams or emailed to emergency management officials
- No need to replay data a process that can take hours.

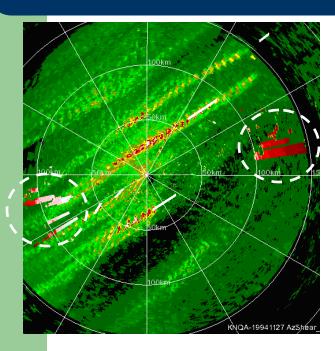

10 Apr 2005

Rotation Tracks: Benefits

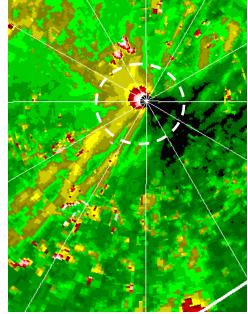

Real-time
 assessment of
 circulation intensity

Damage paths as reported in *Storm Data* (white lines)

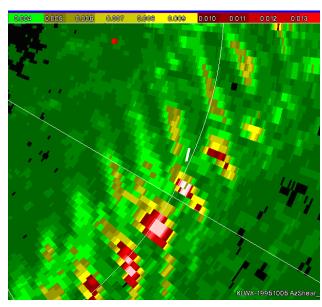
Rotation Track "in progress" (near time tornado begins)



Rotation Tracks and MDA historical tracks / trends



Poorly tracked MDA/TDA detections render the mesocyclone trend information useless!


Some remaining, fixable, issues

Dealiasing errors can occasionally contaminate the track products

Vertical wind shear may cause a false rotation signature near the radar

"Splotchy" appearance caused by radar update rate. Note: all other radar caveats apply!

Rotation Tracks proof-of-concept testing

- Jackson, MS NWSFO 2002-2003
- Wichita, KS NWSFO 2003-2004
- Norman, OK NWSFO 2004-present
- St. Louis, MO NWSFO 2005-present

Surveys and other user feedback have been overwhelmingly positive

Rotation Tracks proof-of-concept testing

- Rotation Track maps continue to be used for post-event damage surveys by those offices that have access to them. An example from Storm Data (29 May 2004):
 - "This tornado was described by spotters as having a large funnel and as a possible "wedge" tornado, but no damage was reported (although power flashes were observed). The estimated track, based on spotters and NSSL Rotation Track maps from the Twin Lakes radar, began 5 miles SE of Meridian and continued NE across rural areas, ending just inside the Logan/Lincoln County line at 2125 CST, 6 miles east of Meridian. The parent mesocyclone occluded shortly thereafter, with a new one forming to the southeast."
- May 9, 2003 (OUN) and Nov 10, 2002 (JAN) survey teams, among others.

Some Final Notes

- Evidence indicates that the Rotation Tracks product saves forecasters time and may improve verification efficiency (help meet GPRA goals by finding more tornadoes)
- Circulation location, intensity, and history are shown in one simple image
- There are still a few minor issues for which potential solutions exist.

Some Final Notes

- Integration with environmental data may further improve the products, but this would require either (a) passing environmental data to the ORPG or (b) generating the environmental-based products on an external machine such as AWIPS.
- Accommodates blending of data from multiple radars – data are not viewing-angle dependant.